Most scanning LiDAR sensors generate a sequence of point clouds in real-time. While conventional 3D object detectors use a set of unordered LiDAR points acquired over a fixed time interval, recent studies have revealed that substantial performance improvement can be achieved by exploiting the spatio-temporal context present in a sequence of LiDAR point sets. In this paper, we propose a novel 3D object detection architecture, which can encode LiDAR point cloud sequences acquired by multiple successive scans. The encoding process of the point cloud sequence is performed on two different time scales. We first design a short-term motion-aware voxel encoding that captures the short-term temporal changes of point clouds driven by the motion of objects in each voxel. We also propose long-term motion-guided bird's eye view (BEV) feature enhancement that adaptively aligns and aggregates the BEV feature maps obtained by the short-term voxel encoding by utilizing the dynamic motion context inferred from the sequence of the feature maps. The experiments conducted on the public nuScenes benchmark demonstrate that the proposed 3D object detector offers significant improvements in performance compared to the baseline methods and that it sets a state-of-the-art performance for certain 3D object detection categories. Code is available at https://github.com/HYjhkoh/MGTANet.git
translated by 谷歌翻译
The extragradient method has recently gained increasing attention, due to its convergence behavior on smooth games. In $n$-player differentiable games, the eigenvalues of the Jacobian of the vector field are distributed on the complex plane, exhibiting more convoluted dynamics compared to classical (i.e., single player) minimization. In this work, we take a polynomial-based analysis of the extragradient with momentum for optimizing games with \emph{cross-shaped} Jacobian spectrum on the complex plane. We show two results. First, based on the hyperparameter setup, the extragradient with momentum exhibits three different modes of convergence: when the eigenvalues are distributed $i)$ on the real line, $ii)$ both on the real line along with complex conjugates, and $iii)$ only as complex conjugates. Then, we focus on the case $ii)$, i.e., when the eigenvalues of the Jacobian have \emph{cross-shaped} structure, as observed in training generative adversarial networks. For this problem class, we derive the optimal hyperparameters of the momentum extragradient method, and show that it achieves an accelerated convergence rate.
translated by 谷歌翻译
我们考虑一个矩阵完成问题,用于将社交或项目相似性图形作为侧面信息。我们开发了一种普遍的,无参数和计算的有效算法,该算法以分层图形聚类开始,然后迭代地改进图形聚类和矩阵额定值。在一个层次的随机块模型,尊重实际相关的社交图和低秩评级矩阵模型(要详细),我们证明了我们的算法实现了观察到的矩阵条目数量的信息 - 理论限制(即,最佳通过与较低的不可能结果一起导出的样本复杂性)通过最大似然估计。该结果的一个结果是利用社交图的层次结构,相对于简单地识别不同组的情况,在不诉诸于它们的情况下,可以产生相对于不同组的样本复杂性的大量增益。我们对合成和现实世界数据集进行了广泛的实验,以证实我们的理论结果,并展示了利用图形侧信息的其他矩阵完成算法的显着性能改进。
translated by 谷歌翻译
随机梯度下降血液(SGDM)是许多优化方案中的主要算法,包括凸优化实例和非凸神经网络训练。然而,在随机设置中,动量会干扰梯度噪声,通常导致特定的台阶尺寸和动量选择,以便保证收敛,留出加速。另一方面,近端点方法由于其数值稳定性和针对不完美调谐的弹性而产生了很多关注。他们随机加速的变体虽然已接受有限的注意:动量与(随机)近端点的稳定性相互作用仍然在很大程度上是不孤立的。为了解决这个问题,我们专注于随机近端点算法的动量(SPPAM)的收敛性和稳定性,并显示SPPAM与随机近端点算法(SPPA)相比具有更好的收缩因子的更快的线性收敛速度,如适当的HyperParameter调整。在稳定性方面,我们表明SPPAM取决于问题常数比SGDM更有利,允许更广泛的步长和导致收敛的动量。
translated by 谷歌翻译
神经网络修剪对于在预训练的密集网络架构中发现有效,高性能的子网有用。然而,更常见的是,它涉及三步过程 - 预先训练,修剪和重新训练 - 这是计算昂贵的,因为必须完全预先训练的密集模型。幸运的是,已经经过了多种作品,证明可以通过修剪发现高性能的子网,而无需完全预先训练密集网络。旨在理论上分析修剪网络表现良好的密集网络预培训量,我们发现在两层全连接网络上的SGD预训练迭代数量中发现了一个理论界限,超出了由此进行修剪贪婪的前瞻性选择产生了一个达到良好训练错误的子网。该阈值显示在对数上依赖于数据集的大小,这意味着具有较大数据集的实验需要更好地训练通过修剪以执行良好执行的子网。我们经验展示了我们在各种架构和数据集中的理论结果的有效性,包括在Mnist上培训的全连接网络以及在CIFAR10和ImageNet上培训的几个深度卷积神经网络(CNN)架构。
translated by 谷歌翻译
The 3D-aware image synthesis focuses on conserving spatial consistency besides generating high-resolution images with fine details. Recently, Neural Radiance Field (NeRF) has been introduced for synthesizing novel views with low computational cost and superior performance. While several works investigate a generative NeRF and show remarkable achievement, they cannot handle conditional and continuous feature manipulation in the generation procedure. In this work, we introduce a novel model, called Class-Continuous Conditional Generative NeRF ($\text{C}^{3}$G-NeRF), which can synthesize conditionally manipulated photorealistic 3D-consistent images by projecting conditional features to the generator and the discriminator. The proposed $\text{C}^{3}$G-NeRF is evaluated with three image datasets, AFHQ, CelebA, and Cars. As a result, our model shows strong 3D-consistency with fine details and smooth interpolation in conditional feature manipulation. For instance, $\text{C}^{3}$G-NeRF exhibits a Fr\'echet Inception Distance (FID) of 7.64 in 3D-aware face image synthesis with a $\text{128}^{2}$ resolution. Additionally, we provide FIDs of generated 3D-aware images of each class of the datasets as it is possible to synthesize class-conditional images with $\text{C}^{3}$G-NeRF.
translated by 谷歌翻译
Cellular automata (CA) captivate researchers due to teh emergent, complex individualized behavior that simple global rules of interaction enact. Recent advances in the field have combined CA with convolutional neural networks to achieve self-regenerating images. This new branch of CA is called neural cellular automata [1]. The goal of this project is to use the idea of idea of neural cellular automata to grow prediction machines. We place many different convolutional neural networks in a grid. Each conv net cell outputs a prediction of what the next state will be, and minimizes predictive error. Cells received their neighbors' colors and fitnesses as input. Each cell's fitness score described how accurate its predictions were. Cells could also move to explore their environment and some stochasticity was applied to movement.
translated by 谷歌翻译
There is a dramatic shortage of skilled labor for modern vineyards. The Vinum project is developing a mobile robotic solution to autonomously navigate through vineyards for winter grapevine pruning. This necessitates an autonomous navigation stack for the robot pruning a vineyard. The Vinum project is using the quadruped robot HyQReal. This paper introduces an architecture for a quadruped robot to autonomously move through a vineyard by identifying and approaching grapevines for pruning. The higher level control is a state machine switching between searching for destination positions, autonomously navigating towards those locations, and stopping for the robot to complete a task. The destination points are determined by identifying grapevine trunks using instance segmentation from a Mask Region-Based Convolutional Neural Network (Mask-RCNN). These detections are sent through a filter to avoid redundancy and remove noisy detections. The combination of these features is the basis for the proposed architecture.
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
In this paper, we learn a diffusion model to generate 3D data on a scene-scale. Specifically, our model crafts a 3D scene consisting of multiple objects, while recent diffusion research has focused on a single object. To realize our goal, we represent a scene with discrete class labels, i.e., categorical distribution, to assign multiple objects into semantic categories. Thus, we extend discrete diffusion models to learn scene-scale categorical distributions. In addition, we validate that a latent diffusion model can reduce computation costs for training and deploying. To the best of our knowledge, our work is the first to apply discrete and latent diffusion for 3D categorical data on a scene-scale. We further propose to perform semantic scene completion (SSC) by learning a conditional distribution using our diffusion model, where the condition is a partial observation in a sparse point cloud. In experiments, we empirically show that our diffusion models not only generate reasonable scenes, but also perform the scene completion task better than a discriminative model. Our code and models are available at https://github.com/zoomin-lee/scene-scale-diffusion
translated by 谷歌翻译